Effect of Surfactants on Pressure-Sensitivity of CNT Filled Cement Mortar Composites
نویسندگان
چکیده
*Correspondence: Xun Yu, Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76203, USA e-mail: [email protected] Sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (NaDDBS) were used as surfactants to disperse multi-walled carbon nanotubes (MWNT) in cement mortar and fabricate pressure-sensitive carbon nanotubes filled cement mortar composites. The pressure-sensitivity of cement mortar composites with different concentrations of MWNT and different surfactants was explored under repeated loading and impulsive loading, respectively. Experimental results indicate that the response of the electrical resistance of composites with NaDDBS to external force is more stable and sensitive than that of composites with SDS. Therefore, NaDDBS has higher efficiency than SDS for the dispersion of MWNT in cement mortar, and it is an effective surfactant for fabricating MWNT filled cement mortar composites with superior pressure-sensitivity.
منابع مشابه
Transport Properties of Carbon-Nanotube/Cement Composites
This paper preliminarily investigates the general transport properties (i.e., water sorptivity, water permeability, and gas permeability) of carbon-nanotube/cement composites. Carboxyl multi-walled carbon nanotubes (MWNTs) are dispersed into cement mortar to fabricate the carbon nanotubes (CNTs) reinforced cement-based composites by applying ultrasonic energy in combination with the use of surf...
متن کاملIncreasing flexural strength and toughness of cement mortar using multi-walled Carbon nanotubes
In this study the effect of using multi-walled carbon nanotube (MWCNT) on flexural and compressive strengths, ultimate displacement and energy absorption capability of standard cement mortar considering different weight percentages of nanotubes as well as different dispersion methods has been investigated. Influential point in adding nanotubes to the composites is their proper dispersion, which...
متن کاملIncreasing flexural strength and toughness of cement mortar using multi-walled Carbon nanotubes
In this study the effect of using multi-walled carbon nanotube (MWCNT) on flexural and compressive strengths, ultimate displacement and energy absorption capability of standard cement mortar considering different weight percentages of nanotubes as well as different dispersion methods has been investigated. Influential point in adding nanotubes to the composites is their proper dispersion, which...
متن کاملOn the Relation of Setting and Early-Age Strength Development to Porosity and Hydration in Cement-Based Materials.
Previous research has demonstrated a linear relationship between compressive strength (mortar cubes and concrete cylinders) and cumulative heat release normalized per unit volume of (mixing) water for a wide variety of cement-based mixtures at ages of 1 d and beyond. This paper utilizes concurrent ultrasonic reflection and calorimetry measurements to further explore this relationship from the t...
متن کاملEffect of surfactants and manufacturing methods on the electrical and thermal conductivity of carbon nanotube/silicone composites.
The effect of ionic surfactants and manufacturing methods on the separation and distribution of multi-wall carbon nanotubes (CNTs) in a silicone matrix are investigated. The CNTs are dispersed in an aqueous solution of the anionic surfactant dodecylbenzene sulfonic acid (DBSA), the cationic surfactant cetyltrimethylammonium bromide (CTAB), and in a DBSA/CTAB surfactant mixture. Four types of CN...
متن کامل